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We develop a scaling theory for the critical depinning behavior of the Sneppen interface model [Phys. Rev.
Lett. 69, 3539 (1992)]. This theory is based on a “gap” equation that describes the self-organization process to
a critical state of the depinning transition. All of the critical exponents can be expressed in terms of two
independent exponents, v|(d) and v, (d), characterizing the divergence of the parallel and perpendicular
correlation lengths as the interface approaches its dynamical attractor.
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The behavior of an interface that is driven in the presence
of quenched random pinning forces appears in a wide variety
of contexts. Familiar examples include fluid invasion in a
porous medium [1], the motion of magnetic domain walls in
the presence of quenched disorder [2], and various forms of
growth phenomena where an interface between two media
moves [3]. If this motion is extremely slow, the static and
dynamic scaling behavior of the interface may be associated
with a depinning transition. Here, we construct a scaling
theory for the depinning transition by studying an interface
model proposed by Sneppen [4]. We derive an equation for
the Sneppen model that describes the self-organization pro-
cess to a critical depinned state. All of the scaling relations
discussed here follow as a consequence of this “gap” equa-
tion.

The depinning transition may be envisioned as follows:
Below a critical driving force F <F_ the interface is pinned
in one of many possible metastable configurations by the
random pinning forces. In response to a small increase in F,
i.e., F—>F+ AF, the interface exhibits jerky motion in local-
ized areas until eventually it gets pinned again at this new
larger value of F. These avalanches of motion take the in-
terface from one metastable state to another. They grow in
size as F increases, until eventually for F=F, their size
diverges, and the interface may move infinitely far from its
original position.

The depinning of the interface at F. can be described as a
critical phenomenon with characteristic divergent length
scales of the avalanches below the transition; while above it
the interface moves with a finite velocity v, which vanishes
as v~(F—F_)?. Hence, v corresponds to the order param-
eter for this transition. Critical behavior associated with de-
pinning should be observed whenever an interface is driven
with a vanishingly small velocity or becomes stuck. For ex-
ample, if the force F decreases slowly from a value above
F_, eventually passing through F_ on its continuing decline,
the interface becomes stuck at the point when F=F_ and
maintains this configuration forever. This situation may oc-
cur, for example, in an experiment where a long piece of
paper, ignited along one edge, is burned in a container sealed
with a finite amount of oxygen. The paper has fluctuations in
its composition that correspond to the quenched random pin-
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ning forces. As the flame burns, the oxygen is depleted, and
eventually the fire goes out. At this point, the interface sepa-
rating the burned and unburned regions becomes stuck in a
critical state of the depinning transition.

Recently, Sneppen [4] introduced a simple lattice model
(model B of Ref. [4], referred to herein as the Sneppen
model) that describes critical interface depinning. The unique
feature of this model is that it self-organizes to the critical
depinning state [5]; so that rather than having to fine-tune the
driving force F, the Sneppen model finds F, on its own.
(This behavior was also found for a similar model con-
structed by Zaitsev [6] to describe low temperature creep
phenomena such as dislocation glide.) In contrast to the
flame experiment described above, however, the Sneppen
model approaches F,. from the pinned state rather than from
the moving state.

The Sneppen model, in 1+1 dimensions, is defined by an
interface on a discrete lattice (x,#) where (a) a random pin-
ning force f(x,h) is assigned from a uniform probability
distribution between zero and one. (b) Growth occurs by
locating the site on the interface with the smallest random
pinning force f..,, and advancing the height at that site by
one unit, A—h+1. (c) After this advance has occurred, a
constraint, |(h,—h,_,)|<1 for all x, is imposed, by advanc-
ing the heights of neighboring sites. Typically, a small num-
ber of sites are advanced during each event. Then, the site
with the lowest random number is located once again, and
the sequence of events continues indefinitely. It is straight-
forward to generalize this model to higher dimensions [7],
where X is now a d-dimensional lattice coordinate.

Subsequently, Tang and Leschhorn [8,9] pointed out (i)
that every allowed position of the interface in the (1+1)-
dimensional Sneppen model corresponds to a path on a clus-
ter of sites with values of f on it greater than or equal to
fmin and (ii) that the Sneppen model in the critical state iden-
tifies exactly, from time to time, with a path on a directed
percolation cluster at the critical point [10]. Thus the rough-
ness of the .Sneppen model in the critical state is
x=v,/v=0.633, where v, =1.097 and »=1.733 are the
correlation length exponents of directed percolation (DP)

[11].
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Generalizing the Tang-Leschhorn picture to d dimensions,
for a given f, there exists a network consisting of all block-
ing surfaces that have f(x,h)=f, for all x. This network
represents all possible positions of the interface with
fmin=fo. In 1+1 dimensions these surfaces are simply span-
ning paths on the infinite directed percolation cluster.

The minimal random pinning force that is chosen for each
event, f...(s), fluctuates in time, s. The f, avalanches are
defined as the number of events separating instances when
fmin(s)=fo. These avalanches correspond to filling in the
voids in the f, network structure; i.e., going from one block-
ing surface, with f(x,h)=f for all x, to another. Thus, un-
like the fractal DP cluster, the Sneppen avalanche is a com-
pact object. Its volume, proportional to s, is given by
s~r lrﬁi, where r, and r| are parallel and perpendicular
sizes in the network.

The mechanism of self-organization to the critical state in
the Sneppen model is analogous to a mechanism recently
developed [12] to describe the Bak-Sneppen evolution model
[13]. Let us suppose that the Sneppen model is started in a
flat configuration, A(x,0)=0 for all x. We define the current
gap G(s) as the maximum of all the f;,(s') for 0<s'<s.
At the starting point s=0, the gap is very small, O(L ~9),
where L is the linear size of the system. Then the gap gradu-
ally increases with time. By definition, G(s) avalanches
separate instances when the gap G(s) jumps to its next
higher value. The average size of the jumps in the gap is
[1—-G(s)]/L%. Consequently, the growth of the gap versus
time s is described by the following equation:

dG(s) 1-G(s)
— = (1)
as L <S>G( D)

The average avalanche size <S>G(s) is the average number
of events to go from one G(s) blocking surface to another.
As the gap increases, the average avalanche size also in-
creases, and eventually diverges as G(s)—f.; whereupon
the Sneppen model is critical, and the distribution of f(x,4)
on the interface achieves stationarity. In the thermodynamic
L —oo limit, the density of sites with f(x,h)<f. vanishes,
and the distribution of f(x,4) is uniform above f,.

The gap equation (1) defines the mechanism of approach
to the self-organized critical (SOC) attractor for the Sneppen
model. In order to solve it, we need to determine precisely
how the average avalanche size (s)g,, diverges as the criti-
cal state is approached,; i.e.,

()G ~[fc—G(s)]77. (2)

This divergence is governed by the fixed point which de-
scribes scaling at and near criticality. In 1+1 dimensions the
Tang-Leschhorn [8,9] mapping to DP shows that the corre-
lation lengths near this fixed point are exactly those of DP.
As a result, the critical exponent y can be determined from
DP (but does not correspond to the y of DP). For the
Sneppen model in d>1, the critical fixed point, or the value
of 7, is not known at present. Nevertheless the gap equation
explicitly shows that in any dimension d=1, the Sneppen
model exhibits SOC.

Using the following argument, the gap equation enables
one to obtain all the critical exponents for the Sneppen
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model from two independent exponents, v and v, . Equa-
tion (2) is valid when the parallel correlation length & is
much less than L, so that the avalanche distribution has no
system size corrections. Integrating Eq. (1) to times s>L¢
where Eq. (2) is valid gives

S Loy =1
Af:f"ﬂG(s)N(,I?, (3)
Since §H~Af“ "I, where Af is given in Eq. (3), the con-
dition £<<L holds as long as S <S yansien~ L ¢, Where d=d
+ (y— 1)/1/”. On the other hand, this transient time is the
time that it takes the system to reach the first critical block-
ing surface which spans the system length. Geometrically
this time is a volume between the initial interface A(x)=0
and the first blocking surface. So, Syansiem~L¢ " "*""". For
these two expressions for s ,sent t0 be consistent, one re-
quires

y=1+v,. (4)

Interestingly, this result for a different interface model was
also derived by Narayan and Fisher [14]. Now, substituting
Eq. (4) into (3), the approach to the SOC attractor is de-
scribed by Af~(s/L4) "7

As was pointed out in [9], the distribution of avalanche
sizes scales as

P(s)~s "F(s/Af "), (5)

near the critical point. Given the relation s~r{lr, , the expo-
nent v can be expressed as

v=dvj+uv,. (6)

Since y=v(2— 7), the exponent 7 is given by

(7)

The exponent y determines another important steady-state
exponent of the model: the probability P(f,i,=fo) that the
chosen minimal random number is equal to f,. From the
definition of the f, avalanche, the probability to observe
fmin=fo is equal to 1/(s) . This immediately gives [15]

P(fmin:fO)Pv(fc_fO)y'l:(fr—f())”*- (8)

The above relation enables us to correct the exponent
11 used by Leschhorn-Tang [9] to describe the distribution
of distances between subsequent active sites. From Eq. (10)
in Ref. [9] one finds the relation Yy =1+7v/y)
= 1+(1+v,)/v|, instead of yr=1+2/v|. In 1+1 dimen-
sions, the Leschhorn-Tang prediction yr;=2.16 is just
within the margin of error of their measured value
vyr.=2.20*+0.05 and disagrees with the value of 2.25
+0.05 measured in Ref. [16]. However, using the values
from DP in our relation gives y;=2.21, which appears to
agree with both numerical results. Furthermore, we suggest
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that the relation yr; =1+ /v holds in any dimension. More
numerical tests are needed, though, in order to completely
clarify this situation.

In addition, our scaling relations [Egs. (4), (6), and (7)],
as well as the approach to the SOC attractor, disagree with a
previous scaling theory for the 1+1 Sneppen model by
Olami, Procaccia, and Zeitak [15]. Olami, Procaccia, and
Zeitak introduce an additional scaling relation, from which
they find »=1.58, and v, =1. This is inconsistent with the
very careful numerical studies of Leschhorn and Tang [9],
supporting their original proposal that the correlation length
exponents are those of 1+1 DP. The data [9] for the ava-
lanche size distribution exhibit excellent data collapse after
rescaling according to (5). The exponents that were used for
this data collapse are v= v+ v, =2.83, which is exactly the
same as our Eq. (6), and a numerically determined value
7=1.25, compared with our prediction 7=1.26. These values
are quite far from the Olami, Procaccia, and Zeitak predic-
tions v=2.58, ™=1.22.

In 2+1 dimensions, our exponent relation for 7 agrees
with Ref. [17] and is consistent with the numerical simula-
tions in 2+ 1 dimensions [7]. Their numerical results, 7=1.45
*+0.03 and v,/v=0.5%0.03, and our scaling relations (5)
and (8) give y—1=v, =0.57*0.05, which is not far from
the measured value of 0.5+0.05.

In order to make a comparison with actual physical sys-
tems, it is important to note that an avalanche can be con-
sidered as a branching process where particles correspond
to activity in the system. For a given G(s) avalanche, par-
ticles are all sites which have pinning forces less than
G(s), i.e., those that will move before the avalanche dies
out. The Sneppen branching process consists of picking the
particle with the lowest random pinning force. However, it is
clear that within a given branching process the scaling be-
havior is not altered by changing the order in which the
particles are chosen, since the interface is constrained ulti-
mately to pass from one blocking surface to another. (These
blocking surfaces are manifestly independent of the order in
which the unstable sites are chosen.) As a result, all particles
in a branching process may be updated in parallel, rather
than choosing the one with the smallest random pinning
force. This latter situation corresponds to the physical picture
described in the introduction. A model with such parallel
rules of dynamics was studied in [18]. Aside from the time
redefinition, the Sneppen mechanism to self-tune F—F,
does not alter the critical behavior from the case where an
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external F is quasistatically increased from F=0 to F, and
the active sites are updated simultaneously. In this latter
case, the gap G(s) in Eq. (1) corresponds to the current
value of F.

Returning to the flame experiment described earlier, we
note that when the fire front is moving rapidly, its behavior
above a certain length scale is believed to be determined by
the Kardar-Parisi-Zhang [19] equation, so that its roughness
x=3 . However, this length scale diverges as F approaches
the depinning threshold F . from above. In fact, it was shown
[18] that the critical index of this diverging length is the
same v=1.733 on both sides of the transition.

It is plausible that the Sneppen model describes a wide
universality class of depinning phenomena [4,9] including
the depinning of the flame front. Consequently, we conjec-
ture that when the fire goes out, the burned edge that remains
has the roughness of the Sneppen model, y=0.63. This fro-
zen front is much rougher than its fast-moving precursors. In
this sense, the Sneppen model, as well as the extinguishing
flame front, can be viewed as self-organized criticality [S]: in
both cases the process leads to an interface of ‘“anomalous™
roughness, characteristic of only the critical point for depin-
ning. In fact, experiments on ‘““flameless” fire fronts in paper
[20], prepared so that the flame front moves rather slowly,
only a few millimeters per second, have found anomalous
roughness, xy=0.7%+0.03. We suspect that, below a certain
length scale, such slow-moving fronts in a random medium
are described by the Sneppen model.

In summary, we have shown that the Sneppen interface
model exhibits self-organized criticality in any dimension
d=1. Our scaling theory is based on the behavior of the gap
equation as the system approaches the steady state. Both
static and dynamic exponents near the depinning transition
can be determined from two independent exponents vy(d)
and v, (d). In one dimension, these correlation length expo-
nents are given by directed percolation. Driving the Sneppen
model with parallel dynamics does not alter the critical be-
havior, but requires the force to be tuned.

We thank P. Bak, Z. Olami, and L.-H Tang for useful
discussions, and K. Sneppen for a careful reading of our
manuscript. This work was supported by the U.S. Depart-
ment of Energy including the Division of Materials Science,
under Contract No. DE-AC02-76CH00016. M.P. thanks the
U.S. Department of Energy Distinguished Postdoctoral Re-
search Program for financial support.

[1] M. A. Rubio, C. A. Edwards, A. Dougherty, and J. P. Gollub,
Phys. Rev. Lett. 63, 1685 (1989); N. Martys, M. O. Robbins,
and M. Cieplak, Phys. Rev. B 44, 12 294 (1991).

[2] R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 52, 1547 (1984);
H. Ji and M. O. Robbins, Phys. Rev. B 46, 14 519 (1992).

[3] T. Halpin-Healy and Y.-C. Zhang (unpublished).

[4] K. Sneppen, Phys. Rev. Lett. 69, 3539 (1992).

[5] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381
(1987); P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38,
364 (1988).

[6] S. 1. Zaitsev, Physica A 189, 411 (1992).

[7] 3. Falk, M. H. Jensen, and K. Sneppen, Phys. Rev. E 49, 2804
(1994).
[8] L.-H. Tang and H. Leschhorn, Phys. Rev. Lett. 70, 3832
(1993).
[9] H. Leschhorn and L.-H. Tang, Phys. Rev. E 49, 1238 (1994).
[10] For a review of directed percolation see Percolation Structures
and Process, edited by G. Deutsher, R. Zallen, and J. Adler,
special issue of Ann. Isr. Phys. Soc. 5 (1983).
[11] J. W. Essam, K. De’Bell, J. Adler, and F. Bhatti, Phys. Rev. B
33, 1982 (1986).
[12] M. Paczuski, S. Maslov, and P. Bak, Brookhaven National



RAPID COMMUNICATIONS

R646 SERGEI MASLOV AND MAYA PACZUSKI 50

Laboratory Report No. BNL-49916 (1993); Europhys. Lett.
27, 97 (1994).
[13] P. Bak and K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993).
[14] O. Narayan and D. S. Fisher, Phys. Rev. B 48, 7030 (1993).
[15] Z. Olami, L. Procaccia, and R. Zeitak, Phys. Rev. E 49, 1232
(1994).
[16] K. Sneppen and M. H. Jensen, Phys. Rev. Lett. 71, 101 (1993).

[17] Z. Olami, 1. Procaccia, and R. Zeitak (unpublished).

[18] L.-H. Tang and H. Leschhorn, Phys. Rev. A 45, R8309 (1992):
S. V. Buldyrev et al., ibid. 45, R8313 (1992).

[19] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889
(1986).

[20] J. Zhang, Y.-C. Zhang, P. Alstrom, and M. T. Levinsen,
Physica A 189, 383 (1992).



